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The root cause for the remarkable success of early finite element methods (FEMs) is their intrinsic
connection with Rayleigh-Ritz principles. Yet, many partial differential equations (PDEs) are not
associated with unconstrained minimization principles and give rise to less favorable settings for
FEMs. Accordingly, there have been many efforts to develop FEMs for such PDEs that share
some, if not all, of the attractive mathematical and algorithmic properties of the Rayleigh-Ritz
setting. Least-squares principles achieve this by abandoning the naturally occurring variational
principle in favor of an artificial, external energy-type principle. Residual minimization in suitable
Hilbert spaces defines this principle. The resulting least-squares finite element methods (LSFEMs)
consistently recover almost all of the advantages of the Rayleigh-Ritz setting over a wide range of
problems and, with some additional effort, they can often create a completely analogous variational
environment for FEMs.

A more detailed presentation of least squares finite element methods is given in [1].

Abstract LSFEM theory. Consider the abstract PDE problem

(1) find u ∈ X such that Lu = f in Y ,

where X and Y are Hilbert spaces, L : X 7→ Y is a bounded linear operator, and f ∈ Y is given
data. Assume (1) to be well posed so that there exist positive constants α and β such that

(2) β‖u‖X ≤ ‖Lu‖Y ≤ α‖u‖X ∀u ∈ X.

The energy balance (2) is the starting point in the development of LSFEMs. It gives rise to the
unconstrained minimization problem, i.e., the least-squares principle (LSP),

(3) {J,X} →
{

min
u∈X

J(u; f), J(u; f) = ‖Lu− f‖2Y
}
,

where J(u, f) is the residual energy functional. From (2), it follows that J(·; ·) is norm equivalent:

(4) β2‖u‖2X ≤ J(u; 0) ≤ α2‖u‖2X ∀u ∈ X.

Norm equivalence (4) and the Lax-Milgram Lemma imply that the Euler-Lagrange equation of (3):

(5) find u ∈ X such that
(
Lv,Lu

)
Y
≡ Q(u,w) = F (w) ≡

(
Lv, f

)
Y
∀ w ∈ X

is well-posed because Q(u,w) is an equivalent inner product on X×X. The unique solution of (5),
resp. (3), coincides with the solution of (1).

We define an LSFEM by restricting (3) to a family of finite element subspaces Xh ⊂ X, h→ 0.
The LSFEM approximation uh ∈ Xh to the solution u ∈ X of (1) or (3) is the solution of the
unconstrained minimization problem

(6) {J,Xh} →
{

min
uh∈Xh

J(uh; f), J(u; f) = ‖Luh − f‖2Y
}
.

To compute uh, we solve the Euler-Lagrange equation corresponding to (6):

(7) find uh ∈ Uh such that Q(uh, wh) = F (wh) ∀wh ∈W h.
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Let {φhj }Nj=1 denote a basis for Xh so that uh =
∑N

j=1 ~u
h
j φ

h
j . Then, the problem (7) is equivalent

to the linear system of algebraic equations

(8) Qh~uh = ~fh

for the unknown vector ~uh, where Qh
ij =

(
Lφhj ,Lφhi

)
Y

and ~fhi =
(
Lφi, f

)
Y

.

Theorem 1. Assume that (2), or equivalently, (4), holds and that Xh ⊂ X. Then,
– the bilinear form Q(·, ·) is continuous, symmetric, and strongly coercive
– the linear functional F (·) is continuous
– the problem (5) has a unique solution u ∈ X that is also the unique solution of (3)
– the problem (7) has a unique solution uh ∈ Xh that is also the unique solution of (6)
– the LSFEM approximation uh is optimally accurate with respect to solution norm ‖ · ‖X for

which (1) is well posed, i.e., for some constant C > 0

(9) ‖u− uh‖X ≤ C inf
vh∈Xh

‖u− vh‖X

– the matrix Qh of (8) is symmetric and positive definite. �

Theorem 1 only assumes that (1) is well posed and that Xh is conforming. It does not require L
to be positive self-adjoint as it would have to be in the Rayleigh-Ritz setting, nor does it impose
any compatibility conditions on Xh that are typical of other FEMs. Despite the generality allowed
for in (1), the LSFEM based on (6) recovers all the desirable features possessed by finite element
methods in the Rayleigh-Ritz setting. This is what makes LSFEMs intriguing and attractive.

Practical LSFEM. Intuitively, a “practical” LSFEM has coding complexity and conditioning
comparable to that of other FEMs for the same PDE. The LSP {J,X} in (3) recreates a true
Rayleigh-Ritz setting for (1), yet the LSFEM {J,Xh} in (6) may be impractical. Thus, sometimes
it is necessary to replace {J,X} by a practical discrete alternative {Jh, Xh}. Two opposing forces
affect the construction of {Jh, Xh}: a desire to keep the resulting LSFEM simple, efficient, and
practical and a desire to recreate the true Rayleigh-Ritz setting. The latter requires Jh to be as
close as possible to the “ideal” norm-equivalent setting in (3).

The transformation of J(·, ·) into a discrete functional Jh(·, ·) illustrates the interplay between
these issues. To this end, it is illuminating to write the energy balance (2) in the form

(10) C1‖SXu‖0 ≤ ‖SY ◦ Lu‖0 ≤ C2‖SXu‖0 ,
where SX ,SY are norm-generating operators for X,Y , respectively, with L2(Ω) acting as a pivot
space. At the least, practicality requires that the basis of Xh can be constructed with no more
difficulty than for Galerkin FEM for the same PDE. To secure this property we ask that the domain
D(SX) of SX contains “practical” discrete subspaces. Transformation of (1) into an equivalent first-
order system PDE achieves this. Then, practicality of the “ideal” LSFEM (6) depends solely on
the effort required to compute SY ◦ Luh. If this effort is deemed reasonable, the original energy
norm |||u||| = ‖SY ◦ Lu‖0 can be retained and the transition process is complete. Otherwise, we
proceed to replace the composite operator SY ◦L by a computable discrete approximation ShY ◦Lh.

We may need a projection operator πh that maps the data f to the domain of ShY . The conversion
process and the key properties of the resulting LSFEM can be encoded by the transition diagram

(11)

J(u; f) = ‖SY ◦ (Lu− f)‖20 → |||u|||
↓ ↓ ↓

Jh(uh; f) = ‖ShY ◦(Lhuh− πhf)‖0 → |||uh|||h
and the companion norm-equivalence diagram

(12)
C1‖u‖X ≤ |||u||| ≤ C2‖u‖X
↓ ↓ ↓

C1(h)‖uh‖X ≤ |||uh|||h ≤ C2(h)‖uh‖X .
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Because L defines the problem being solved, the choice of Lh governs the accuracy of the LSFEM.
The goal here is to make Jh as close as possible to J for the exact solution of (1). On the other
hand, SY defines the energy balance of (1), i.e., the proper scaling between data and solution. As
a result, the main objective in the choice of ShY is to ensure that the scaling induced by Jh is as
close as possible to (2), i.e., to “bind” the LSFEM to the energy balance of the PDE.

Taxonomy of LSFEMs. Assuming that Xh is practical, restriction of {J,X} to Xh transforms
(3) into the compliant LSFEM {J,Xh} in (6). Apart from this “ideal” LSFEM which reproduces
the classical Rayleigh-Ritz principle, there are two other kinds of LSFEMs that gradually drift away
from this setting, primarily by simplifying the approximations of the norm-generating operator SY .
Mesh-independent C1(h) and C2(h) in (12) characterize the norm-equivalent class, which retains
virtually all attractive properties of the Rayleigh-Ritz setting, including identical convergence rates
and matrix condition numbers. A mesh-dependent norm-equivalence (12) distinguishes the quasi-
norm-equivalent class, which admits the broadest range of LSFEMs, but can give problems with
higher condition numbers.

Examples. We use the Poisson equation for which L = −∆ to illustrate different classes of LS-
FEMs. One energy balance (2) for this equation corresponds toX = H2(Ω)∩H1

0 (Ω) and Y = L2(Ω):

α‖u‖2 ≤ ‖∆u‖0 ≤ β‖u‖2.
The associated LSP

{J,X} →
{

min
u∈X

J(u; f), J(u; f) = ‖∆u− f‖20
}

leads to impractical LSFEMs because finite element subspaces of H2(Ω) are not easy to construct.
Transformation of −∆u = f into the equivalent first-order system

(13) ∇ · q = f and ∇u+ q = 0

can solve this problem. The spaces X = H1
0 (Ω)× [L2(Ω)]d, Y = H−1(Ω)× [L2(Ω)]d have practical

finite element subspaces and provide the energy balance

α(‖u‖1 + ‖q‖0) ≤ ‖∇ · q‖−1 + ‖∇u+ q‖0 ≤ β(‖u‖1 + ‖q‖0).
This energy balance gives rise to the minus one norm LSP

(14) {J,X} →
{

min
(u,q)∈X

J(u,q; f), J(u,q; f) = ‖∇ · q− f‖2−1 + ‖∇u+ q‖20
}
.

However, (14) is still impractical because the norm-generating operator SH−1 = (−∆)−1/2 is not
computable in general. The simple approximation ShH−1 = hI yields the weighted LSFEM

(15) {Jh, Xh} →
{

min
(uh,qh)∈Xh

Jh(uh,qh; f), Jh(uh,qh; f) = h2‖∇ · qh − f‖20 + ‖∇uh + qh‖20
}

which is quasi-norm equivalent. The more accurate approximation ShH−1 = hI + Kh1/2, where Kh

is a spectrally-equivalent preconditioner for −∆ gives the discrete minus-one norm LSFEM

(16) {Jh, Xh} →
{

min
(uh,qh)∈Xh

Jh(uh,qh; f), Jh(uh,qh; f) = ‖∇ · qh − f‖2−h + ‖∇uh + qh‖20
}

which is norm-equivalent.
The first-order system (13) also has the energy balance

α(‖u‖1 + ‖q‖div) ≤ ‖∇ · q‖0 + ‖∇u+ q‖0 ≤ β(‖u‖1 + ‖q‖div)

which corresponds to X = H1
0 (Ω)×H(div,Ω) and Y = L2(Ω)× [L2(Ω)]d. The associated LSP

(17) {J,X} →
{

min
(u,q)∈X

J(u,q; f), J(u,q; f) = ‖∇ · q− f‖20 + ‖∇u+ q‖20
}
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is practical. Approximation of the scalar u by standard nodal elements and of the vector q by
div-conforming elements, such as Raviart-Thomas, BDM, or BDFM, yields a compliant LSFEM
which under some conditions has the exact same local conservation property as the mixed Galerkin
method for (13).
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